Util Snippets#
Simple Async Task#
1import asyncio
2import omni
3
4# Async task that pauses simulation once the incoming task is complete
5async def pause_sim(task):
6 done, pending = await asyncio.wait({task})
7 if task in done:
8 print("Waited until next frame, pausing")
9 omni.timeline.get_timeline_interface().pause()
10
11# Start simulation, then wait a frame and run the pause_sim task
12omni.timeline.get_timeline_interface().play()
13task = asyncio.ensure_future(omni.kit.app.get_app().next_update_async())
14asyncio.ensure_future(pause_sim(task))
Get Camera Parameters#
The below script show how to get the camera parameters associated with a viewport.
1import omni
2from omni.syntheticdata import helpers
3import math
4
5stage = omni.usd.get_context().get_stage()
6viewport_api = omni.kit.viewport.utility.get_active_viewport()
7# Set viewport resolution, changes will occur on next frame
8viewport_api.set_texture_resolution((512, 512))
9# get resolution
10(width, height) = viewport_api.get_texture_resolution()
11aspect_ratio = width / height
12# get camera prim attached to viewport
13camera = stage.GetPrimAtPath(viewport_api.get_active_camera())
14focal_length = camera.GetAttribute("focalLength").Get()
15horiz_aperture = camera.GetAttribute("horizontalAperture").Get()
16vert_aperture = camera.GetAttribute("verticalAperture").Get()
17# Pixels are square so we can also do:
18# vert_aperture = height / width * horiz_aperture
19near, far = camera.GetAttribute("clippingRange").Get()
20fov = 2 * math.atan(horiz_aperture / (2 * focal_length))
21# helper to compute projection matrix
22proj_mat = helpers.get_projection_matrix(fov, aspect_ratio, near, far)
23
24# compute focal point and center
25focal_x = height * focal_length / vert_aperture
26focal_y = width * focal_length / horiz_aperture
27center_x = height * 0.5
28center_y = width * 0.5
Rendering#
There are three primary APIs you should use when making frequent updates to large amounts of geometry: UsdGeom.Points
,
UsdGeom.PointInstancer
, and DebugDraw
. The different advantages and limitations of each of these methods are explained
below, and can help guide you on which method to use.
UsdGeom.Points#
Use the UsdGeom.Points
API when the geometry needs to interact with the renderer.
The UsdGeom.Points
API is the most efficient method to render large amounts of point geometry.
1import random 2import omni.usd 3from pxr import UsdGeom 4 5def create(self): 6 # Create Point List 7 N = 500 8 self.point_list = [(random.uniform(-100, 100), 0, random.uniform(-50, 50)) for _ in range(N)] 9 self.sizes = [5 for _ in range(N)] 10 11 points_path = "/World/Points" 12 stage = omni.usd.get_context().get_stage() 13 self.points = UsdGeom.Points.Define(stage, points_path) 14 self.points.CreatePointsAttr().Set(self.point_list) 15 self.points.CreateWidthsAttr().Set(self.sizes) 16 self.points.CreateDisplayColorPrimvar("constant").Set([(1, 0, 1)]) 17 18def update(self): 19 # modify the point list 20 for i in range(len(self.point_list)): 21 self.point_list[i][1] = random.uniform(-5,5) 22 # update the points 23 self.points.GetPointsAttr().Set(self.point_list)
UsdGeom.PointInstancer#
Use the UsdGeom.PointInstancer
API when the geometry needs to interact with the physics scene.
The UsdGeom.PointInstancer
API lets you efficiently replicate an instance of a prim — with all of its USD properties —
and update all instances with a list of positions, colors, and sizes.
See the PointInstancer Tutorial for more hands-on learning with the PointInstancer API.
Below are code snippets for how to create and update geometry with UsdGeom.PointInstancer
:
1import random 2import omni.usd 3from pxr import UsdGeom 4 5def create(self): 6 # Create Point List 7 N = 500 8 self.point_list = [(random.uniform(-100, 100), 0, random.uniform(-50, 50)) for _ in range(N)] 9 self.colors = [(1, 1, 1, 1) for _ in range(N)] 10 self.sizes = [5 for _ in range(N)] 11 12 # Set up Geometry to be Instanced 13 cube_path = "/World/Cube" 14 cube = UsdGeom.Cube(stage.DefinePrim(cube_path, "Cube")) 15 cube.AddScaleOp().Set(Gf.Vec3d(1, 1, 1) * scalar) 16 cube.CreateDisplayColorPrimvar().Set([(0, 1, 1)]) 17 # Set up Point Instancer 18 stage = omni.usd.get_context().get_stage() 19 instance_path = "/World/PointInstancer" 20 self.point_instancer = UsdGeom.PointInstancer(stage.DefinePrim(instance_path, "PointInstancer")) 21 # Create & Set the Positions Attribute 22 self.positions_attr = self.point_instancer.CreatePositionsAttr() 23 self.positions_attr.Set(self.point_list) 24 # Set the Instanced Geometry 25 self.point_instancer.CreatePrototypesRel().SetTargets([cube.GetPath()]) 26 self.proto_indices_attr = self.point_instancer.CreateProtoIndicesAttr() 27 self.proto_indices_attr.Set([0] * len(self.point_list)) 28 29def update(self): 30 # modify the point list 31 for i in range(len(self.point_list)): 32 self.point_list[i][1] = random.uniform(-5,5) 33 # update the points 34 self.positions_attr.Set(self.point_list)
DebugDraw#
The Debug Drawing Extension API API is useful for purely visualizing geometry in the Viewport. Geometry drawn with the debug_draw_interface
cannot be rendered and does not interact with the physics scene. However, it is the most performance-efficient method of visualizing geometry.
See the API documentation for complete usage information.
Below are code snippets for how to create and update geometry visualed with DebugDraw
:
1import random 2from omni.isaac.debug_draw import _debug_draw 3 4def create(self): 5 self.draw = _debug_draw.acquire_debug_draw_interface() 6 N = 500 7 self.point_list = [(random.uniform(-100, 100), 0, random.uniform(-50, 50)) for _ in range(N)] 8 self.colors = [(1, 1, 1, 1) for _ in range(N)] 9 self.sizes = [5 for _ in range(N)] 10 11def update(self): 12 # modify the point list 13 for i in range(len(self.point_list)): 14 self.point_list[i][1] = random.uniform(-5,5) 15 16 # draw the points 17 self.draw.clear_points() 18 self.draw.draw_points(self.point_list, self.color_list, self.size_list)
Rendering Frame Delay#
The default rendering pipeline in the app experiences have upto 3 frames in flight to be rendered, which results in higher FPS since the simulation is not blocked until the latest state is rendered completely.
For applications that need the rendered data to correspond to the latest simulation state with no delay, the following experience file should be used apps/omni.isaac.sim.zero_delay.python.kit
. Below is an example of how to use the experience file in a standlone workflow.
SimulationApp({"headless": True}, experience="apps/omni.isaac.sim.zero_delay.python.kit")